Convert lidar data to a 2D grid map 

by DeepnoteFeb 1, 2021
1 like2 duplicates
Share
Twitter iconTwitter
Facebook iconFacebook
Email
Copy link
Save as PDF
  1. Convert lidar data to a 2D grid map
    1. LIDAR to 2D grid map example

Convert lidar data to a 2D grid map

Jun 13, 2020 by PythonRobotics

A tutorial on how to convert a 2D range measurement into a grid map.

LIDAR to 2D grid map example

This simple tutorial shows how to read LIDAR (range) measurements from a file and convert it to occupancy grid.

Occupancy grid maps (Hans Moravec, A.E. Elfes: High resolution maps from wide angle sonar, Proc. IEEE Int. Conf. Robotics Autom. (1985)) are a popular, probabilistic approach to represent the environment. The grid is basically discrete representation of the environment, which shows if a grid cell is occupied or not. Here the map is represented as a numpy array, and numbers close to 1 means the cell is occupied (marked with red on the next image), numbers close to 0 means they are free (marked with green). The grid has the ability to represent unknown (unobserved) areas, which are close to 0.5.

In order to construct the grid map from the measurement we need to discretise the values. But, first let's need to import some necessary packages.

import math import numpy as np import matplotlib.pyplot as plt from math import cos, sin, radians, pi

The measurement file contains the distances and the corresponding angles in a csv (comma separated values) format. Let's write the file_read method:

def file_read(f): """ Reading LIDAR laser beams (angles and corresponding distance data) """ measures = [line.split(",") for line in open(f)] angles = [] distances = [] for measure in measures: angles.append(float(measure[0])) distances.append(float(measure[1])) angles = np.array(angles) distances = np.array(distances) return angles, distances

From the distances and the angles it is easy to determine the x and y coordinates with sin and cos. In order to display it matplotlib.pyplot (plt) is used.

ang, dist = file_read("lidar01.csv") ox = np.sin(ang) * dist oy = np.cos(ang) * dist plt.figure(figsize=(6,10)) plt.plot([oy, np.zeros(np.size(oy))], [ox, np.zeros(np.size(oy))], "ro-") # lines from 0,0 to the plt.axis("equal") bottom, top = plt.ylim() # return the current ylim plt.ylim((top, bottom)) # rescale y axis, to match the grid orientation plt.grid(True) plt.show()

The lidar_to_grid_map.py contains handy functions which can used to convert a 2D range measurement to a grid map. For example the bresenham gives the a straight line between two points in a grid map. Let's see how this works.

import lidar_to_grid_map as lg map1 = np.ones((50, 50)) * 0.5 line = lg.bresenham((2, 2), (40, 30)) for l in line: map1[l[0]][l[1]] = 1 plt.imshow(map1) plt.colorbar() plt.show()
line = lg.bresenham((2, 30), (40, 30)) for l in line: map1[l[0]][l[1]] = 1 line = lg.bresenham((2, 30), (2, 2)) for l in line: map1[l[0]][l[1]] = 1 plt.imshow(map1) plt.colorbar() plt.show()

To fill empty areas, a queue-based algorithm can be used that can be used on an initialized occupancy map. The center point is given: the algorithm checks for neighbour elements in each iteration, and stops expansion on obstacles and free boundaries.

from collections import deque def flood_fill(cpoint, pmap): """ cpoint: starting point (x,y) of fill pmap: occupancy map generated from Bresenham ray-tracing """ # Fill empty areas with queue method sx, sy = pmap.shape fringe = deque() fringe.appendleft(cpoint) while fringe: n = fringe.pop() nx, ny = n # West if nx > 0: if pmap[nx - 1, ny] == 0.5: pmap[nx - 1, ny] = 0.0 fringe.appendleft((nx - 1, ny)) # East if nx < sx - 1: if pmap[nx + 1, ny] == 0.5: pmap[nx + 1, ny] = 0.0 fringe.appendleft((nx + 1, ny)) # North if ny > 0: if pmap[nx, ny - 1] == 0.5: pmap[nx, ny - 1] = 0.0 fringe.appendleft((nx, ny - 1)) # South if ny < sy - 1: if pmap[nx, ny + 1] == 0.5: pmap[nx, ny + 1] = 0.0 fringe.appendleft((nx, ny + 1))

This algotihm will fill the area bounded by the yellow lines starting from a center point (e.g. (10, 20)) with zeros:

flood_fill((10, 20), map1) map_float = np.array(map1)/10.0 plt.imshow(map1) plt.colorbar() plt.show()

Let's use this flood fill on real data:

xyreso = 0.02 # x-y grid resolution yawreso = math.radians(3.1) # yaw angle resolution [rad] ang, dist = file_read("lidar01.csv") ox = np.sin(ang) * dist oy = np.cos(ang) * dist pmap, minx, maxx, miny, maxy, xyreso = lg.generate_ray_casting_grid_map(ox, oy, xyreso, False) xyres = np.array(pmap).shape plt.figure(figsize=(20,8)) plt.subplot(122) plt.imshow(pmap, cmap = "PiYG_r") plt.clim(-0.4, 1.4) plt.gca().set_xticks(np.arange(-.5, xyres[1], 1), minor = True) plt.gca().set_yticks(np.arange(-.5, xyres[0], 1), minor = True) plt.grid(True, which="minor", color="w", linewidth = .6, alpha = 0.5) plt.colorbar() plt.show()

Recommended on Deepnote

Stock Market Analysis

Stock Market Analysis

Last update a month ago
The 10 Best Ways to Create NumPy Arrays

The 10 Best Ways to Create NumPy Arrays

Last update 2 months ago
Wide Residual Networks

Wide Residual Networks

Last update 3 months ago