import anvil.server
anvil.server.connect("XR3N6TCMMANMPIP4ETR4FN6V-KZTY2LRNDSFKR2UX")
Connecting to wss://anvil.works/uplink
Anvil websocket open
Connected to "Default environment (dev)" as SERVER
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
df=pd.read_csv('GoldPrice.csv', parse_dates=['Date'])
df.head()
plt.figure(figsize=(16, 9))
sns.lmplot(x='Open', y='High', data=df, ci=None)
plt.figure(figsize=(16, 9))
sns.lmplot(x='Open', y='Low', data=df, ci=None)
import sklearn
from sklearn.linear_model import LinearRegression
model = LinearRegression() # create object/instance (create an instance from LinearRegression class)
model
model.fit(df[['Open']], df['High'])
model.score(df[['Open']], df['High'])
model.coef_
model.predict([[73495.23]])
model2 = LinearRegression() # create object/instance (create an instance from LinearRegression class)
model2
model2.fit(df[['Open']], df['Low'])
model2.score(df[['Open']], df['Low'])
model2.coef_
model2.predict([[73495.23]])
@anvil.server.callable
def predict_peak(open_price):
regression = model.predict([[open_price]])
return regression[0]
@anvil.server.callable
def predict_low(open_price):
regression2 = model2.predict([[open_price]])
return regression2[0]