# Start writing code here... just making graphs for APS
import matplotlib.pyplot as plt
import numpy as np
# Here are old data using inflection point of pj
# Has been shown to be quite consistent, based on Jan 13 analysis, whether we use extrapolation to p=0 or inflection point of pj
Npsqu = [0, 16, 36, 49, 64, 81, 100, 100, 121, 144]
nfsqu = [0, .0695, .1565, .2130,.2783, .3202, .3906, .4348, .4727, .5783]
phisqu = [.840, .835, .827, .824, .814, .807, .801, .801, .802, .782]
Nptri = [0, 16, 36, 49, 64, 81, 100]
nftri = [0,.0696,.1565 ,.2130, .2783, .3522, .4328]
phitri = [.840, .835, .826, .824, .812, .801, .787]
alphasqu = np.multiply(nfsqu, phisqu)
lambdasqu = alphasqu/4.649557
lambdatri = alphatri/4.649557 / 2 * 3**.5
print('squ lattice alpha is', alphasqu)
alphatri = np.multiply(nftri,phitri)
print('tri lattice alpha is ', alphatri)
plt.plot(alphasqu, phisqu, 'rs', markersize = 10, markerfacecolor = 'w')
plt.plot(alphatri, phitri, 'g^', markersize = 10, markerfacecolor = 'w')
plt.xlim(0, .6)
plt.xlabel(r'$\alpha$', fontsize = 20)
plt.ylabel(r'$\phi_j$', fontsize = 20)
plt.show()
plt.plot(nfsqu, phisqu, 'rs', markersize = 10, markerfacecolor = 'w')
plt.plot(nftri, phitri, 'g^', markersize = 10, markerfacecolor = 'w')
plt.xlabel(r'$n_f$', fontsize = 20)
plt.ylabel(r'$\phi_j$', fontsize = 20)
plt.xlim(0, .6)
plt.show()
# Look at lambda as independent axis to compare with Liam's simulation
plt.plot(lambdasqu, phisqu, 'rs', markersize = 10, markerfacecolor = 'w')
plt.plot(lambdatri, phitri, 'g^', markersize = 10, markerfacecolor = 'w')
plt.xlabel(r'$\lambda$', fontsize = 20)
plt.ylabel(r'$\phi_j$', fontsize = 20)
plt.xlim(0, .3)
plt.show()
# Look at lambda^2 * "fudge factor" as independent axis to compare with Liam's simulation
liamsqu = alphasqu/3.14159
liamtri = alphatri/3.14159
plt.plot(liamsqu, phisqu, 'rs', markersize = 10, markerfacecolor = 'w')
plt.plot(liamtri, phitri, 'g^', markersize = 10, markerfacecolor = 'w')
plt.xlabel(r'$\lambda^2 \ *\ g$', fontsize = 20)
plt.ylabel(r'$\phi_j$', fontsize = 20)
plt.xlim(0, .3)
squ lattice alpha is [0. 0.0580325 0.1294255 0.175512 0.2265362 0.2584014 0.3128706
0.3482748 0.3791054 0.4522306]
tri lattice alpha is [0. 0.058116 0.129269 0.175512 0.2259796 0.2821122 0.3406136]