!pip install seaborn==0.11.0
Collecting seaborn==0.11.0
Downloading seaborn-0.11.0-py3-none-any.whl (283 kB)
|████████████████████████████████| 283 kB 15.1 MB/s
Requirement already satisfied: scipy>=1.0 in /opt/venv/lib/python3.7/site-packages (from seaborn==0.11.0) (1.5.4)
Requirement already satisfied: pandas>=0.23 in /opt/venv/lib/python3.7/site-packages (from seaborn==0.11.0) (1.0.5)
Requirement already satisfied: matplotlib>=2.2 in /opt/venv/lib/python3.7/site-packages (from seaborn==0.11.0) (3.3.2)
Requirement already satisfied: numpy>=1.15 in /opt/venv/lib/python3.7/site-packages (from seaborn==0.11.0) (1.19.4)
Requirement already satisfied: python-dateutil>=2.6.1 in /opt/venv/lib/python3.7/site-packages (from pandas>=0.23->seaborn==0.11.0) (2.8.1)
Requirement already satisfied: pytz>=2017.2 in /opt/venv/lib/python3.7/site-packages (from pandas>=0.23->seaborn==0.11.0) (2020.4)
Requirement already satisfied: cycler>=0.10 in /opt/venv/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn==0.11.0) (0.10.0)
Requirement already satisfied: certifi>=2020.06.20 in /opt/venv/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn==0.11.0) (2020.6.20)
Requirement already satisfied: pillow>=6.2.0 in /opt/venv/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn==0.11.0) (8.0.1)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /opt/venv/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn==0.11.0) (2.4.7)
Requirement already satisfied: kiwisolver>=1.0.1 in /opt/venv/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn==0.11.0) (1.3.1)
Requirement already satisfied: six>=1.5 in /opt/venv/lib/python3.7/site-packages (from python-dateutil>=2.6.1->pandas>=0.23->seaborn==0.11.0) (1.15.0)
Installing collected packages: seaborn
Successfully installed seaborn-0.11.0
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sn
def load_dataset(path):
dataset = pd.read_csv(path, header=0, delimiter=',')
return dataset
train_dataset = load_dataset("train.csv")
test_dataset = load_dataset('test.csv')
x_train = train_dataset.drop("price_range", axis="columns").to_numpy()
y_train = train_dataset["price_range"].to_numpy()
train_dataset
test_dataset
for i,j in zip(train_dataset.columns,train_dataset.dtypes):
print(i,":",j)
print("Number of attributes = %d" %train_dataset.columns.size)
battery_power : int64
blue : int64
clock_speed : float64
dual_sim : int64
fc : int64
four_g : int64
int_memory : int64
m_dep : float64
mobile_wt : int64
n_cores : int64
pc : int64
px_height : int64
px_width : int64
ram : int64
sc_h : int64
sc_w : int64
talk_time : int64
three_g : int64
touch_screen : int64
wifi : int64
price_range : int64
Number of attributes = 21
corrMatrix = train_dataset.corr()
sn.heatmap(corrMatrix, annot=True)
plt.show()