import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn
plt.style.use('seaborn')
from numpy import random
data = np.random.randint(1, 7, size=(1, 100000))
data=data[0]
seaborn.histplot(pd.DataFrame(data), discrete=True, shrink=0.9, legend=False,
stat='probability');
seaborn.ecdfplot(data=data);
data = random.uniform(low=0.0, high=1.0, size=100000)
pd.DataFrame(data).hist(bins=10);
seaborn.ecdfplot(data=data);
lançamentos_1 = np.random.randint(1, 7, size=(1, 10000))[0]
lançamentos_1
n, p = 1, .5 # number of trials, probability of each trial
s = np.random.binomial(n, p, 1000)
pd.DataFrame(s).hist();
pd.DataFrame(random.normal(loc=0.0, scale=1.0, size=100000)).hist(bins=100);
seaborn.ecdfplot(data=data);
data = np.random.randint(1, 7, size=(2, 100000))
data = data[0] + data[1]
seaborn.histplot(pd.DataFrame(data), discrete=True, shrink=0.9, legend=False, stat='probability');