E211 - Relatório 1 - Monitora: Muriel
import numpy as np
import matplotlib.pyplot as plt
vetor_1 = np.array([1, 2, 3, 4])
print(vetor_1)
[1 2 3 4]
vetor_2 = np.arange(0, 1, 0.1)
print(vetor_2)
[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]
vetor_3 = np.ones(6)
print(vetor_3)
[1. 1. 1. 1. 1. 1.]
vetor_4 = np.zeros(6)
print(vetor_4)
[0. 0. 0. 0. 0. 0.]
vetor_5 = np.random.random(6)
print(vetor_5)
[0.53491007 0.05287884 0.56552985 0.94219221 0.82190494 0.70760239]
vetor_6 = np.linspace(-5, 5, 10)
print(vetor_6)
[-5. -3.88888889 -2.77777778 -1.66666667 -0.55555556 0.55555556
1.66666667 2.77777778 3.88888889 5. ]
a = 25
raiz = np.sqrt(a)
print(raiz)
5.0
t=np.arange(0,1,1/10000)
x=np.sin(2*np.pi*1000*t)
maximo = np.max(vetor_5)
print("max = ", maximo)
minimo = np.min(vetor_5)
print("min = ", minimo)
max = 0.9421922105069954
min = 0.0528788371016925
x = np.array([2, 1, 4, 3])
h = np.array([1, -1])
y = np.convolve(x,h)
print(y)
[ 2 -1 3 -1 -3]
t=np.arange(0,1,1/10000)
x=np.sin(2*np.pi*1000*t)
plt.plot(t[200:300],x[200:300])
plt.title("Senoide")
plt.xlabel("t (s)")
plt.ylabel("x(t)")
plt.grid()
plt.show()
import numpy as np
v = np.array([1,2,3,4,5,6,7,8]).reshape(4,2,1)
print("tensor \n",v)
print("Número de dimensoes ", v.ndim)
print("Número de elementos", np.size(v))
print("OUTROS EXEMPLOS")
V = np.zeros((3,3))
print("Matriz com zeros")
print('V = \n', V)
U = np.ones((3,4,5))
print("Matriz com uns")
print('U = \n', U)
D = np.diag([10, 10, 10])
print("Matriz identidade com valores definidos")
print('D = \n', D)
tensor
[[[1]
[2]]
[[3]
[4]]
[[5]
[6]]
[[7]
[8]]]
Número de dimensoes 3
Número de elementos 8
OUTROS EXEMPLOS
Matriz com zeros
V =
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]
Matriz com uns
U =
[[[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]]
[[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]]
[[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]]]
Matriz identidade com valores definidos
D =
[[10 0 0]
[ 0 10 0]
[ 0 0 10]]
#As funções arange e linspace permitem a criação de sequências como tensores NumPy:
import numpy as np
v = np.arange(0, 5, 3)
u = np.linspace(3.88,3 , 10)
# aqui a conta é (3-3.7)/(10-1) cada unidade / resolucao --> 0.7/9 => somando a cd amostra
# 10 "espaços" -- de 0 até 5
#
#--> RESOLVA usando linspace
# comecando de 2 e indo ate 3 e de 0.11111... em 0.1111...
x = np.linspace(2,3,10)
w = np.arange(0,4,3)
#for i in range(0,len(u)):
# print(u[i])
print("v =", v)
print("u =", u)
print("w =", w)
print("x =", x)
v = [0 3]
u = [3.88 3.78222222 3.68444444 3.58666667 3.48888889 3.39111111
3.29333333 3.19555556 3.09777778 3. ]
w = [0 3]
x = [2. 2.11111111 2.22222222 2.33333333 2.44444444 2.55555556
2.66666667 2.77777778 2.88888889 3. ]