#TP INTEGRADOR
#Nombre: Valeria Vera Ramirez
#Comisión: 22048 - Regina Morales
# ARTÍCULOS
conn = sql3.connect('/work/data/articles.db')
query1 = pd.read_sql_query('SELECT * FROM articles', conn)
df_articles = pd.DataFrame(query1, columns = ['article_id', 'article_name', 'unit_price'])
# print(df_articles)
# VENDEDORES
df_sellers = pd.read_excel('/work/data/sellers.xlsx', index_col=0)
# print(df_sellers)
# ÓRDENES
df_orders = pd.read_csv('/work/data/orders.csv')
print(df_orders)
order_id week article_id quantity seller_id country_name
0 15024 1 20039 10 10 Peru
1 15025 1 20029 15 5 Peru
2 15026 1 20024 5 14 Bolivia
3 15027 1 20018 9 14 Brazil
4 15028 1 20035 6 15 Mexico
.. ... ... ... ... ... ...
995 16019 4 20021 1 7 Brazil
996 16020 4 20040 15 15 Brazil
997 16021 4 20040 2 11 Colombia
998 16022 4 20018 14 11 Brazil
999 16023 4 20026 12 9 Brazil
[1000 rows x 6 columns]
print('Muestra de datos')
print(df_articles.head())
print('\nFormato del dataframe')
print(df_articles.shape)
print('\nBúsqueda de valores nulos por columna')
print(df_articles.isnull().sum())
print('\nFormato de los datos')
print(df_articles.dtypes)
Muestra de datos
article_id article_name unit_price
0 20015 Smartphone 525.00
1 20016 Full Pc 2127.81
2 20017 Monitor 230.00
3 20018 Tablet 130.00
4 20019 Desk 130.10
Formato del dataframe
(31, 3)
Búsqueda de valores nulos por columna
article_id 0
article_name 0
unit_price 0
dtype: int64
Formato de los datos
article_id int64
article_name object
unit_price object
dtype: object
print('Muestra de datos')
print(df_sellers.head())
print('\nFormato del dataframe')
print(df_sellers.shape)
print('\nBúsqueda de valores nulos por columna')
print(df_sellers.isnull().sum())
print('\nFormato de los datos')
print(df_sellers.dtypes)
Muestra de datos
seller_name
seller_id
1 Aveline Swanwick
2 Jase Doy
3 Oliviero Charkham
4 Cornie Wynrehame
5 Ewell Peres
Formato del dataframe
(15, 1)
Búsqueda de valores nulos por columna
seller_name 0
dtype: int64
Formato de los datos
seller_name object
dtype: object
print('Muestra de datos')
print(df_orders.head())
print('\nFormato del dataframe')
print(df_orders.shape)
print('\nBúsqueda de valores nulos por columna')
print(df_orders.isnull().sum())
print('\nFormato de los datos')
print(df_orders.dtypes)
Muestra de datos
order_id week article_id quantity seller_id country_name
0 15024 1 20039 10 10 Peru
1 15025 1 20029 15 5 Peru
2 15026 1 20024 5 14 Bolivia
3 15027 1 20018 9 14 Brazil
4 15028 1 20035 6 15 Mexico
Formato del dataframe
(1000, 6)
Búsqueda de valores nulos por columna
order_id 0
week 0
article_id 0
quantity 0
seller_id 0
country_name 0
dtype: int64
Formato de los datos
order_id int64
week int64
article_id int64
quantity int64
seller_id int64
country_name object
dtype: object
df_articles['unit_price'] = df_articles['unit_price'].astype(float)
print(df_articles.dtypes)
article_id int64
article_name object
unit_price float64
dtype: object
# Creo una copia del df base
my_df = df_orders.copy()
# Cambio el índice del df artículos
df_articles.set_index('article_id', inplace=True)
print(my_df)
#print(df_articles)
order_id week article_id quantity seller_id country_name
0 15024 1 20039 10 10 Peru
1 15025 1 20029 15 5 Peru
2 15026 1 20024 5 14 Bolivia
3 15027 1 20018 9 14 Brazil
4 15028 1 20035 6 15 Mexico
.. ... ... ... ... ... ...
995 16019 4 20021 1 7 Brazil
996 16020 4 20040 15 15 Brazil
997 16021 4 20040 2 11 Colombia
998 16022 4 20018 14 11 Brazil
999 16023 4 20026 12 9 Brazil
[1000 rows x 6 columns]
# Agrego algunas columnas y pongo el campo que me va a servir de "ancla"
my_df = my_df.assign(article_name = my_df['article_id'])
my_df = my_df.assign(total_amount = my_df['article_id']) # voy a necesitar el unit_price
my_df = my_df.assign(seller_name = my_df['seller_id'])
# reeplazar los valores en el nuevo df
# df_articles[?]['article_name']
for i in range(len(my_df.index)):
# len... devuelve la cantidad de registros
article = df_articles.loc[my_df.loc[i]['article_name']]['article_name']
# reemplazo en la columna 'article_name'
my_df.loc[i,'article_name'] = article
# modificar la columna total_amount
my_df.loc[i,'total_amount'] = my_df.loc[i,'quantity'] * df_articles.loc[my_df.loc[i]['total_amount']]['unit_price']
# modifical la columna 'seller_name'
my_df.loc[i,'seller_name'] = df_sellers.loc[my_df.loc[i]['seller_name']]['seller_name']
# elimino las columnas que no necesito
my_df.drop(['order_id','article_id','seller_id'], axis='columns', inplace=True)
print(my_df)
week quantity country_name article_name total_amount seller_name
0 1 10 Peru Water Cooling 675.0 Cirilo Grandham
1 1 15 Peru Mouse 454.5 Ewell Peres
2 1 5 Bolivia Netbook 725.0 Janel O'Curran
3 1 9 Brazil Tablet 1170.0 Janel O'Curran
4 1 6 Mexico Case 227.4 Daisie Slograve
.. ... ... ... ... ... ...
995 4 1 Brazil Modem 67.5 Kati Innot
996 4 15 Brazil Heatsink 150.0 Daisie Slograve
997 4 2 Colombia Heatsink 20.0 Vasily Danilyuk
998 4 14 Brazil Tablet 1820.0 Vasily Danilyuk
999 4 12 Brazil SDD 264.0 Onida Cosely
[1000 rows x 6 columns]
# RESOLUCIÓN ANALÍTICA
my_df2 = my_df.groupby('article_name').sum()
por_cant = my_df2.sort_values('quantity',ascending=False)
print(por_cant['quantity'].head(1))
article_name
HDD 413
Name: quantity, dtype: int64
# RESOLUCIÓN GRÁFICA
sns.displot(my_df, x='article_name')
plt.xticks(rotation=90)
plt.show()
El artículo más vendido es el HDD.
# RESOLUCIÓN ANALÍTICA
my_df3 =(my_df.groupby('article_name').sum()).sort_values('total_amount', ascending=False).head(5)
print(my_df3['total_amount'])
article_name
Full Pc 538335.93
Notebook 251000.00
Smartphone 152250.00
Chair 69477.48
Tablet 48620.00
Name: total_amount, dtype: float64
# RESOLUCIÓN GRÁFICA
# Sólo análisis con los top 5
plt.pie(x=my_df3['total_amount'], labels=my_df3.index)
plt.show()
El artículo que más ingresos proporcionó es el Full Pc.
# RESOLUCIÓN ANALÍTICA
my_df4 = (my_df.groupby('seller_name').sum()).sort_values('total_amount', ascending=False)
print(my_df4[['quantity']+['total_amount']])
quantity total_amount
seller_name
Janel O'Curran 703 192832.47
Brockie Patience 441 142709.88
Oliviero Charkham 555 141329.76
Vasily Danilyuk 521 129157.55
Daisie Slograve 554 120520.11
Aveline Swanwick 629 118874.33
Arnold Kilkenny 583 94552.04
Kati Innot 512 83704.62
Jase Doy 582 80628.31
Ewell Peres 496 78144.32
Onida Cosely 535 77373.37
Milly Christoffe 442 61733.69
Tobin Roselli 519 56984.42
Cornie Wynrehame 523 52253.57
Cirilo Grandham 470 45009.40
# RESOLUCIÓN GRÁFICA
plt.bar(my_df4.index, my_df4['total_amount'])
plt.xticks(rotation=60)
plt.show()
Se le debe entregar el bono de "Mejor vendedor del mes" a Janel O'Curran.
# RESOLUCIÓN ANALÍTICA
my_df5 = (my_df.groupby('week').sum()).sort_values('total_amount',ascending=False)
print(my_df5)
quantity total_amount
week
1 2449 507458.81
2 2444 415364.44
3 2114 329140.03
4 1058 223844.56
# RESOLUCIÓN GRÁFICA
plt.bar(my_df5.index,my_df5['total_amount'])
plt.show()
plt.pie(x=my_df5['total_amount'], labels=my_df5.index)
plt.title('Variaciones en ventas por semana')
plt.show()
A lo largo del mes hay variaciones en las ventas, según este análisis es conveniente lanzar una campaña de promociones a principio de mes.
# RESOLUCIÓN
my_df6=(my_df.groupby('article_name').sum().sort_values('quantity',ascending=0).tail(3))
print(my_df6[['quantity']+['total_amount']])
quantity total_amount
article_name
Fan Cooler 205 871.25
Keyboard 165 3729.00
Wi-Fi Card 141 8405.01
# RESOLUCIÓN
my_df7= (my_df.groupby('country_name').sum().sort_values('total_amount',ascending=0))
print(my_df7[['quantity']+['total_amount']])
quantity total_amount
country_name
Brazil 2515 441271.85
Argentina 947 205832.78
Colombia 881 177514.29
Peru 1027 161421.12
Mexico 846 138619.99
Venezuela 320 77684.52
El Salvador 111 57391.26
Guatemala 202 52579.25
Honduras 303 36763.56
Costa Rica 145 34606.50
Chile 231 24660.98
Bolivia 181 22682.80
Uruguay 92 17843.09
Ecuador 129 17475.30
Paraguay 123 8195.12
Puerto Rico 12 1265.43
# RESOLUCIÓN
my_df8= (my_df.groupby('country_name').sum().sort_values('total_amount',ascending=0).head(5))
plt.pie(x=my_df8['total_amount'],labels=my_df8.index)
plt.title('5 países con más ventas')
plt.show()