# Create the years and durations lists
years = [2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]
durations = [103, 101, 99, 100, 100, 95, 95, 96, 93, 90]
# Create a dictionary with the two lists
movie_dict = {}
movie_dict["years"] = years
movie_dict["durations"] = durations
# Print the dictionary
print(movie_dict)
# Import pandas under its usual alias
import pandas as pd
# Create a DataFrame from the dictionary
durations_df = pd.DataFrame(movie_dict)
# Print the DataFrame
print(durations_df)
# Import matplotlib.pyplot under its usual alias and create a figure
import matplotlib.pyplot as plt
fig = plt.figure()
# Draw a line plot of release_years and durations
plt.plot(years, durations)
plt.xlabel('release_years')
plt.ylabel('durations')
# Create a title
plt.title('Netflix Movie Durations 2011-2020')
# Show the plot
plt.show()
# Read in the CSV as a DataFrame
netflix_df = pd.read_csv("datasets/netflix_data.csv")
# Print the first five rows of the DataFrame
print(netflix_df.head(5))
# Subset the DataFrame for type "Movie"
netflix_df_movies_only = netflix_df[netflix_df["type"] == "Movie"]
# Select only the columns of interest
col = ["title", "country", "genre", "release_year", "duration"]
netflix_movies_col_subset = netflix_df_movies_only[col]
# Print the first five rows of the new DataFrame
print(netflix_movies_col_subset.head(5))
# Create a figure and increase the figure size
fig = plt.figure(figsize=(12,8))
# Create a scatter plot of duration versus year
plt.scatter(netflix_movies_col_subset['release_year'], netflix_movies_col_subset['duration'])
# Create a title
plt.title("Movie Duration by Year of Release")
# Show the plot
plt.show()
# Filter for durations shorter than 60 minutes
short_movies = netflix_movies_col_subset[netflix_movies_col_subset["duration"] < 60]
# Print the first 20 rows of short_movies
print(short_movies.head(20))
# Define an empty list
colors = []
# Iterate over rows of netflix_movies_col_subset
for lab, row in netflix_movies_col_subset.iterrows() :
if row['genre'] == "Children" :
colors.append("red")
elif row['genre'] == "Documentaries" :
colors.append("blue")
elif row['genre'] == "Stand-Up" :
colors.append("green")
else:
colors.append("black")
# Inspect the first 10 values in your list
print(colors[:11])
# Set the figure style and initalize a new figure
plt.style.use('fivethirtyeight')
fig = plt.figure(figsize=(12,8))
# Create a scatter plot of duration versus release_year
plt.scatter(netflix_movies_col_subset["release_year"], netflix_movies_col_subset["duration"], c = colors)
# Create a title and axis labels
plt.xlabel("Release year")
plt.ylabel("Duration (min)")
plt.title("Movie duration by year of release")
# Show the plot
plt.show()
# Are we certain that movies are getting shorter?
are_movies_getting_shorter = "We do not know for sure if movies are getting shorter, to get a more accurate answer it is necessary to perform additional analysis. However, with the information we have we can say that no, there is no tendency for movies to get shorter, most of them are in the range of 160 and 90 minutes, which we could say is the average length of movies nowadays."