!pip install tensorflow
import tensorflow as tf
print(tf.__version__)
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = tf.keras.utils.normalize(x_train, axis=1)
x_test = tf.keras.utils.normalize(x_test, axis=1)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation=tf.nn.relu))
#model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(10, activation=tf.nn.softmax))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=30)
model.evaluate(x_test, y_test)
import matplotlib.pyplot as plt
plt.figure(figsize=(30,18))
for i in range(20):
plt.subplot(6,6,i+1)
plt.imshow(x_train[i], cmap=plt.cm.binary)
plt.xlabel(y_train[i])