import pandas as pd
pd.__version__
# Download a sample file from http://insideairbnb.com/
! wget http://data.insideairbnb.com/united-states/fl/broward-county/2022-06-17/visualisations/listings.csv -O listings.csv
# read the airbnb NYC listings csv file
airbnb = pd.read_csv("listings.csv")
# display the pandas DataFrame
display(airbnb)
# View first few entries
airbnb.head()
# View last few entries
airbnb.tail()
# Results for a single column
airbnb['name']
# results for multiple columns
hosts = airbnb[['host_id', 'host_name']]
hosts.head()
# Show the data types for each column
airbnb.dtypes
# Change the type of a column to datetime
airbnb['last_review'] = pd.to_datetime(airbnb['last_review'])
airbnb.dtypes
# extract the year from a datetime series
airbnb['year'] = airbnb['last_review'].dt.year
airbnb['year'].head()
Series String Functions
# Strip leading and trailing spaces from a string series
airbnb['name'] = airbnb['name'].str.strip()
airbnb['name'].head()
# uppercase all strings in a series
airbnb['name_upper'] = airbnb['name'].str.upper()
airbnb['name_upper'].head()
# lowercase all strings in a series
airbnb['name_lower'] = airbnb['name'].str.lower()
airbnb['name_lower'].head()
Derived Columns
# calculate using two columns
airbnb['min_revenue'] = airbnb['minimum_nights'] * airbnb['price']
airbnb[['minimum_nights', 'price', 'min_revenue']].head()
Summary Statistics
# get the mean price
airbnb['price'].mean()
# get the median price
airbnb['price'].median()
# standard deviation
airbnb['price'].std()
# variance
airbnb['price'].var()
Grouped Statistics
# get the mean grouped by type of room
airbnb[['room_type', 'price']].groupby('room_type', as_index=False).mean()
# get the median grouped by type of room
airbnb[['room_type', 'price']].groupby('room_type', as_index=False).median()
Filtering Data
# get all rows with price < 1000
airbnb_under_1000 = airbnb[airbnb['price'] < 1000]
airbnb_under_1000.head()
# get all rows with price < 1000 and year equal to 2020
airbnb_2019_under_1000 = airbnb[(airbnb['price'] < 1000) & (airbnb['year'] == 2020)]
airbnb_2019_under_1000.head()
Plotting
# distribution of prices under $1000
ax = airbnb_under_1000['price'].plot.hist(bins=40)
Pandas Series
import numpy as np
pd.Series([1,3,5,6], index=['A1','A2','A3','A4'])
a = {'A': 5, 'B': 7}
s = pd.Series(a)
s
a = np.random.randn(100)*5+100
date = pd.date_range('20220101',periods=100)
s = pd.Series(a,index=date)
s
a = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
b = pd.Series([4, 3, 2, 1], index=['d', 'c', 'b', 'a'])
a + b # different from Python list
a - b
a * b
a/b
Pandas Dataframe
d = [[1,2],[3,4]]
df = pd.DataFrame(d,index=['r1', 'r2'],columns=['a','b'])
df
import numpy as np
d = np.arange(24).reshape(6,4)
d
df = pd.DataFrame(d, index=np.arange(1,7), columns=list('ABCD'))
df
pd.DataFrame(
{ #beginning a dictionary
'name': ['Ally','Jane','Belinda'], #name dictionary defined as three names
'height':[160,155,163], #height dictionary defined as three numbers
},
columns = ['name','height'], #names of columns
index = ['A1', 'A2', 'A3'] #names of rows
)
from pandas import DataFrame #makes dataframe a local object from pandas
my_df = DataFrame(data = np.random.randn(16).round(2).reshape(4,4),
index = ['r'+str(i) for i in range (1,5)],
columns = ['c'+str(i) for i in range (1,5)])
my_df
my_df.loc[['r1', 'r4'], ['c3', 'c4']]
#loc command extracts whatever is specified
#we extract row 1 and 4, and column 3 and 4
!head -5 listings.csv
%ls
import os
[x for x in os.listdir(os.getcwd()) if 'csv' in x]
!mkdir data
%ls
airbnb.to_csv('./data/listings.csv')
Data Manipulation
airbnb_grouped = airbnb.groupby("room_type")
len(airbnb_grouped)
airbnb_grouped.apply(lambda x: x[['host_name', 'price', 'room_type']].sort_values(by = 'price', ascending = False).iloc[:3,:1])
airbnb.groupby('room_type').apply(lambda x: x['price'].describe())