train.head()
test.head()
sample.head()
train.describe()
train = train.drop(columns=["id"])
train["Year_Factor"].value_counts()
train["State_Factor"].value_counts()
train["building_class"].value_counts()
train["facility_type"].value_counts()
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
nominal = ["Year_Factor", "State_Factor"]
ordinal = ["building_class", "facility_type"]
train_val = train.drop(columns=nominal+ordinal)
train_val.head()
scaled = scaler.fit(train_val)
from sklearn.model_selection improt train_test_split
X, y = train_test_split()
from sklearn.linear_model import LinearRegression
model = LinearRegression()