# Start writing code here...
import pandas as pd
pd.__version__
! wget http://data.insideairbnb.com/united-states/fl/broward-county/2022-06-17/visualisations/listings.csv -O listings.csv
airbnb = pd.read_csv("listings.csv")
display(airbnb)
airbnb.head()
airbnb.tail()
airbnb['name']
hosts = airbnb[['host_id', 'host_name']]
hosts.head()
airbnb.dtypes
airbnb['last_review'] = pd.to_datetime(airbnb['last_review'])
airbnb.dtypes
airbnb['year'] = airbnb['last_review'].dt.year
airbnb['year'].head()
airbnb['name'] = airbnb['name'].str.strip()
airbnb['name'].tail()
airbnb['name_upper'] = airbnb['name'].str.upper()
airbnb['name_upper'].tail()
airbnb['name_lower'] = airbnb['name'].str.lower()
airbnb['name_lower'].tail()
airbnb['min_revenue'] = airbnb['minimum_nights'] * airbnb['price']
airbnb[['minimum_nights', 'price', 'min_revenue']].head()
airbnb['price'].mean()
airbnb['price'].median()
airbnb['price'].std()
airbnb['price'].var()
airbnb[['room_type', 'price']].groupby('room_type', as_index=False).mean()
airbnb[['room_type', 'price']].groupby('room_type', as_index=False).median()
airbnb_under_1000 = airbnb[airbnb['price'] < 1000]
airbnb_under_1000.head()
airbnb_2019_under_1000 = airbnb[(airbnb['price'] < 1000) & (airbnb['year'] == 2020)]
airbnb_2019_under_1000.head()
ax = airbnb_under_1000['price'].plot.hist(bins=40)
d = [[1,2], [3,4]]
df = pd.DataFrame(d,index=[1,2],columns=['a','b'])
df
import numpy as np
d = np.arange(24).reshape(6,4)
d
pd.DataFrame(
{
'name' : ['Ally','Jane','Belinda'],
'height': [160,155,163],
},
columns = ['name', 'height'],
index = ['A1','A2','A3']
)
from pandas import DataFrame
my_df = DataFrame(data = np.random.randn(16).round(2).reshape(4,4),
index = ['r'+str(i) for i in range(1, 5)],
columns = ['c'+str(i) for i in range(1, 5)])
my_df
my_df.T
my_df.loc[['r1', 'r4'], ['c3', 'c4']]
my_df.iloc[[0, 3], [2, 3]]
# allows you to see some of the stuff before importing file
!head -5 listings.csv
%ls
import os
[x for x in os.listdir(os.getcwd()) if 'csv' in x]
!mkdir data
%ls
airbnb.to_csv('./data/listings.csv')
os.listdir(os.getcwd() + '/data')
airbnb_grouped = airbnb.groupby("room_type")
len(airbnb_grouped)
airbnb_grouped.apply(lambda x: x[['host_name', 'price', 'room_type']].sort_values(by = 'price', ascending = False).iloc[:3, :])
airbnb.groupby('room_type').apply(lambda x: x['price'].describe())
airbnb.groupby(['room_type', 'neighbourhood'])['price'].mean().unstack()
pd.pivot_table(data = airbnb,
index = 'room_type',
values = 'price',
aggfunc = 'mean')
%timeit airbnb.groupby('room_type')['price'].mean()