!pip install h2o
!pip install dabl
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from dabl import plot
train = pd.read_excel("/content/Data_Train.xlsx")
train.head()
test = pd.read_excel("/content/Test_set.xlsx")
test.head()
plot(train,'Airline')
plt.show()
plot(train,'Price')
plt.show()
plot(train,'Source')
plt.show()
plot(train,'Destination')
plt.show()
train.to_csv("C:\\Users\\Lulus\\Deck\\Desktop\\MachineHack\\Flight_Ticket_Participant_Datasets\\train_csv.csv")
test.to_csv("C:\\Users\\Lulus\\Deck\\Desktop\\MachineHack\\Flight_Ticket_Participant_Datasets\\test_csv.csv")
import h2o
from h2o.automl import H2OAutoML
# Start the H2O cluster (locally)
h2o.init()
# Import a sample binary outcome train/test set into H2O
train = h2o.import_file("C:\\Users\\Lulus\\Deck\\Desktop\\MachineHack\\Flight_Ticket_Participant_Datasets\\train_csv.csv")
test = h2o.import_file("C:\\Users\\Lulus\\Deck\\Desktop\\MachineHack\\Flight_Ticket_Participant_Datasets\\test_csv.csv")
preds = aml.leader.predict(test)
preds.columns=['Price']
preds.head()
submission = preds.as_data_frame(use_pandas=True)
submission.info()
submission.to_csv("C:\\Users\\Lulus\\Deck\\Desktop\\MachineHack\\Flight_Ticket_Participant_Datasets\\submission.csv")