import numpy as np
data = np.array([
[1, 1.5, 2],
[5, 3, 1]
])
data
data.shape
data.dtype
data.size
np.zeros((3, 6))
np.empty((2, 4))
np.arange(10)
np.arange(10, dtype = np.float64)
a1 = np.arange(10)
a2 = a1.astype(np.float64)
a2.dtype
a1 = np.arange(1,5)
a1 * a1
a1 + a1
1 / a1
a2 = np.arange(4,0, -1)
a1 > a2
a1 = np.arange(10)
a1
a1[2 : 5] = 2000
a1s = a1[2 : 5]
a1s
a1
a1s[1] = 10
a1s
a1
a1s[:] = 3076
a1s
a1
a3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
a3d
a3d[1]
a3d[0][1][2]
# or you can use:
a3d[0,1,2]
a3d[0] = 5
a3d
a2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
a2d
a2d[:2]
a2d[:2, 1:]
a = np.arange(18).reshape(3,6)
a
a.T
np.dot(a.T, a)
a.T @ a
a = np.arange(5)
a
np.sqrt(a)
np.exp(a)
b = np.arange(4, -1, -1)
b
np.maximum(a, b)
c = a / 3
c
i, r = np.modf(c)
i
r
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
a = np.arange(10) + 100
a
plt.plot(a)
fig = plt.figure()
ax1 = fig.add_subplot(2, 2, 1)
ax1
ax2 = fig.add_subplot(2, 2, 2)
ax2
fig = plt.figure()
ax1 = fig.add_subplot(2, 2, 1)
ax2 = fig.add_subplot(2, 2, 2)
ax3 = fig.add_subplot(2, 2, 3)
ax4 = fig.add_subplot(2, 2, 4)
plt.plot(np.random.standard_normal(50).cumsum(), color = 'black', linestyle = 'dashed')
fig = plt.figure()
ax1 = fig.add_subplot(2, 2, 1)
ax2 = fig.add_subplot(2, 2, 2)
ax3 = fig.add_subplot(2, 2, 3)
# ax4 = fig.add_subplot(2, 2, 4)
ax3.plot(np.random.standard_normal(50).cumsum(), color = 'black', linestyle = 'dashed')
fig = plt.figure()
ax1 = fig.add_subplot(2, 2, 1)
ax2 = fig.add_subplot(2, 2, 2)
ax3 = fig.add_subplot(2, 2, 3)
# ax4 = fig.add_subplot(2, 2, 4)
ax3.plot(np.random.standard_normal(50).cumsum(), color = 'black', linestyle = 'dashed')
ax2.scatter(np.arange(30), np.arange(30) + 3 * np.random.standard_normal(30))
fig = plt.figure()
ax1 = fig.add_subplot(2, 2, 1)
ax2 = fig.add_subplot(2, 2, 2)
ax3 = fig.add_subplot(2, 2, 3)
# ax4 = fig.add_subplot(2, 2, 4)
ax3.plot(np.random.standard_normal(50).cumsum(), color = 'black', linestyle = 'dashed')
ax2.scatter(np.arange(30), np.arange(30) + 3 * np.random.standard_normal(30))
ax1.hist(np.random.standard_normal(100), bins = 20, color = 'black', alpha = .3)
fig, axes = plt.subplots(2, 3)
axes
fig, axes = plt.subplots(2, 2, sharex = True, sharey = True)
for i in range(2):
for j in range(2):
axes[i, j].hist(np.random.standard_normal(500), bins = 50, color = 'black', alpha = .5)
fig.subplots_adjust(wspace = 0, hspace = 0)