school = 'Platzi'
print(____) # Incluir la variable declarada anteriormente.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# agrega librerías que necesites
url_wine_red = 'https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv'
url_wine_white = 'https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv'
red = pd.read_csv(____, delimiter="____")
white = pd.read_csv(____, delimiter="____")
red['____']='red'
white['____']='white'
total_wine=red.____(____, ignore_index=True)
quality = total_wine['____']
____
total_wine['quality_category'] = total_wine['quality'].apply(lambda x: ____)
total_wine.tail()
total_wine.quality_category = ____
total_wine.info()
3. Elimina los outliers de ser necesario en la siguiente celda.
total_wine.____()[['____']].sort_values(by='____', ascending = False)