# Import libraries and DataFrame
#
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from pandas import DataFrame, Series
# Read the data from pokeman.csv into a DataFrame using pandas read_csv()
# Print out the first 6 lines of data using .head
df = pd.read_csv ('pokeman.csv')
df.head(6)
# print out the data types of all features using .dtypes (no parentheses)
df.dtypes
# print out the column names using .columns
df.columns
# Create a pandas Series for the feature Speed; print out type
df['Speed']
# Create a NumPy array for the feature Speed (use.values) ; print out type
sp= df.Speed.values
print (type(sp))
print (sp)
# Make 1D NumPy arrays from the features Attack and Defense and do a scatter plot
# using matplotlib
#
a= df.Attack.values
d= df.Defense.values
plt.plot (a, d, 'mo')
plt.xlabel ('Attack')
plt.ylabel ('Defense')
# Create a new DataFrame "df_mod" which is same as original but we drop "Type 2" feature; print out to check
df_mod= df.drop (columns=[ 'Type 2'])
df_mod
# Import libraries and DataFrame
#
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from pandas import DataFrame, Series
import seaborn as sns
# Read the data into a DataFrame
# Print out the first 5 lines of data
df = pd.read_csv ('pokeman.csv')
df.head(5)
# Add a white grid to the background of Seaborn plots using set_style
sns.set_style ('whitegrid')
# Make a scatter plot using Seaborn's relplot of Defense statistics (y-axis)
# vs Attacks Stats
sns.relplot (x= 'Attack', y= 'Defense' , data=df)
# Repeat plot in previous cell but use color to indicate Type 1 (hue = )
sns.relplot (x= 'Attack', y= 'Defense' , data=df, hue = 'Type 1')
# Make a category plot of Defense statistics vs Type 1 (non-numerical)
# Rotation labels on x-axis for readability using plt.xticks using plt.xticks(rotation=-45)
sns.catplot (x= 'Defense', y= 'Type 1', data=df)
plt.xticks (rotation=-45)
# Make a Bar graph of Defense statistics for Type 1
sns.barplot (x= 'Defense', y= 'Type 1', data=df)
# Make a violin plot of the Defense data for Type 1
sns.violinplot (x= 'Defense', y= 'Type 1', data=df)
# Repeat the plot in the previous cell but change palette to 'prism' and change size
sns.violinplot (x= 'Defense', y= 'Type 1', data=df, palette = 'prism')
# Overlaying plots - overlay violin plot of Defense with actual points
# To do this (1) increase figure size using ```plt.figure(figsize = (10,6) )```;
# (2) create violin plot and set inner = None to get rid of the bars inside violin plot;
# (3) rotate x-axis labels for readability;
# (4) create swarmplot for points and set ```color='k'``` to create the points in black;
# (5) add title "Defense Data for Type 1"
#
plt.figure(figsize = (10,6) )
sns.violinplot (x= 'Defense', y= 'Type 1', data=df, palette = 'prism', inner = None)
sns.swarmplot (x = 'Defense', y= 'Type 1', data=df, color= 'k')
plt.title = ('Defense Data for Type 1')
# Import libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from pandas import DataFrame, Series
import seaborn as sns
# Import LinearRegression function from scikit-learn
from sklearn.linear_model import LinearRegression
# Read in data from file insurance.csv and create a DataFrame; print out some lines
#
df = pd.read_csv ('insurance.csv')
df.head (4)
# Set background grid for Seaborn plots
sns.set_style ('whitegrid')
# Create scatter plot of charges vs BMI with color indiciating whether patient is
# smoker or not
sns.relplot (x= 'charges', y= 'bmi', data=df, hue= 'smoker')
# Get data to use for linear regression
# Right now we see if there is a relationship between insurance charges and bmi
charges= df.charges.values
n= len(charges)
charges= np.reshape (charges,(n,1))
bmi= df.bmi.values
bmi= np.reshape (bmi, (n,1))
# Make bmi an n by 1 array and charges n by 1
print ('charges reshaped', charges)
print ('bmi reshaped', bmi)
# Create model and fit data
lr=LinearRegression()
# write out equation of line
lr.fit(bmi,charges)
print ('intercept', lr.intercept_)
print ('slope', lr.coef_)
print ('The equation which fits the data in a linear regression sense is:')
print (f'{round (lr.intercept_[0],4)} + {round(lr.coef_[0,0],4)} times bmi')
# Use regplot to plot data and line
sns.regplot (x= 'charges', y= 'bmi', data=df)
# predict insurance costs for a person with BMI 31.7; round answer to nearest cent
#
# Note that this value agrees with plot above because when x=31.7 y is around 14,000
print (f' insurance cost of a person with a bmi of 31.7 is {1192.9372 + 393.873*31.7} ')