Guides
Check out ready-to-run tutorials to get started with Deepnote
Snowflake
Snowflake provides a single platform for data warehousing, data lakes, data engineering, data science, data application development, and secure sharing and consumption of real-time and shared data
introduction
Data science and analytics
Data science and analytics are interdisciplinary fields that involve extracting insights and knowledge from data through various techniques, including statistical analysis, machine learning, data mining, and visualization.
introduction
What is exploratory programming?
What is exploratory data analysis (EDA)?
What is advanced analytics?
Efficient data cleaning strategies in Jupyter notebooks
What's the real difference between data science and data analytics?
Centralized vs distributed data teams
What is a data workspace?
Modern data team collaboration
Introduction to data science for managers
Roles in a modern data team
How to become a data team lead
Introduction to managing data teams
Pandas vs Polars
How to analyze Google ads data in Python using Deepnote
How to analyze data from QuickBooks in Python using Deepnote
Jupyter
Jupyter is an open-source project that provides a web-based interactive computing platform. The name "Jupyter" is derived from the core programming languages it initially supported: Julia, Python, and R.
introduction
versioning
other
How to run a Jupyter notebook in the cloud
How to schedule a Jupyter notebook
How to optimize Jupyter Notebooks for machine learning projects
How to open a Jupyter notebook
How to open an ipynb file
How to run Jupyter notebooks automatically
Where to host a Jupyter notebook
How to import a Jupyter notebook
How to export a Jupyter notebook
How to convert Jupyter to Python
How to check the Python version in Jupyter
How to run Jupyter in Docker
Dashboarding
With an intuitive, real-time collaborative environment, teams can seamlessly work together from anywhere. Deepnote simplifies visualizing complex datasets with features like connecting to various data sources and showing them to stakeholders.
Juptyer dashboards
Collaboration
Collaboration within data teams is critical as it pools diverse expertise and perspectives, leading to more comprehensive and robust analyses. By working together, team members can validate findings and reduce the risk of oversight or bias in data interpretation.
Google Cloud
Google Cloud is a suite of cloud computing services provided by Google that runs on the same infrastructure that Google uses internally for its end-user products, such as Google Search, Gmail, file storage, and YouTube. It offers a range of services including computing, data storage, data analytics, and machine learning. Organizations of all sizes can utilize Google Cloud to create anything from simple websites to complex applications.
Introduction
Google Drive
Google Sheets
Google BigQuery
How to connect to BigQuery with Python
How to work with BigQuery in Jupyter
How to visualize data in BigQuery
How to schedule queries in BigQuery
How to create a table from query in BigQuery
How to move data from Cloud SQL to BigQuery
How to export results to CSV in BigQuery
What are saved queries in BigQuery?
AWS
Amazon Web Services (AWS) is a comprehensive and widely adopted cloud platform that offers over 200 fully featured services from data centers globally. AWS provides infrastructure and various services such as computing power, storage options, and networking that can be used to build applications with increased flexibility, scalability, and reliability.
Sagemaker
SQL
SQL, or Structured Query Language, is a powerful tool for managing and manipulating relational databases, allowing for complex data querying and analysis. It is the standard language for relational database management systems, used widely in various data-driven applications.
Data platforms
Data platforms are technology solutions that collect, store, manage, and analyze large amounts of data. They handle the growing volume, velocity, and variety of data from digital activities. These platforms provide infrastructure for data warehousing, big data processing, and analytics, enabling organizations to gain insights and make data-driven decisions.
Introduction
ChatGPT
Data ops
Versioning
Versioning with notebooks involves maintaining a record of changes and updates made to the documents, making it easier to track revisions and collaborate with others.
ChatGPT
How to use state of the art AI with Data Science & Deepnote
Notebook Integrations
Introduction to custom environments in notebooks
introduction
Rust kernel in Deepnote for blazingly fast notebooks
Using JavaScript in Deepnote
Enhancing data analysis with Deepnote and Scala
Mastering R in Deepnote: A comprehensive guide to collaborative data science
Boosting data processing in Deepnote: A guide to setting Up C++ kernels
Importing function from another notebook
Platform solutions
Solutions to common issues on the platform
Introductions
Building a Streamlit app with LangChain and OpenAI in Deepnote
Use Poetry in Deepnote instead of dealing with local packages
Optimizing qgrid functionality in Deepnote
Using Folium in Deepnote: A guide to displaying maps
Selenium web-driver exception in Deepnote
Connecting to Oracle Cloud database with Deepnote
Resolving pyodbc connection Issues in Deepnote
Notebook tutorials
How-to guides on getting the most out of your notebook.
advanced
Introductions
Python functions and variable scope with Deepnote
Cheat sheet for markdown in Deepnote notebooks
Python conditional statements in Deepnote
Exploring exponentials, radicals, and logarithms with Deepnote Notebooks
Deepnote Pandas puzzle: A comprehensive guide to mastering Pandas
Deepnote Notebooks for data analysis
Tutorials
How-tos for specific niches